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KINETIC THEORY O F  BIMOLECULAR CHEMICAL REACTION, 


DIFFUSIVE DRAG, AND OTHER PROCESSES 


IN A GAS MIXTURE 


By Richard A. Hord 

Langley Research Center 


SUMMARY 


For two gas species with a temperature difference and a bulk velocity difference 
neither of which is necessarily small  in magnitude, the kinetic theory of gases has been 
used to derive explicit expressions for the collision frequency, diffusive drag force, 
molecular translational energy transfer rate, and the bimolecular chemical reaction 
frequency. The derivations, which a re  based upon hypothesized mutual collision diam ­
eters ,  activation energies, and s ter ic  factors, a r e  of interest in connection with theoret­
ical studies of low-pressure gas mixtures with large departures from equilibrium. A 
binary temperature concept is introduced as an aid in condensing and interpreting the 
expressions derived from the kinetic theory. The expression derived for the diffusive 
drag force is used to give a more definite form to the equations of motion of the individ­
ual species in a mixture of several interdiffusing gases. 

INTRODUCTION 

The theory of diffusion and chemical reaction in gas mixtures must be extended 
substantially if it is to meet effectively the challenging demands of a number of recent 
problems encountered in aerospace research, for example, the theoretical problem 
associated with the release of a gas in the upper atmosphere which reacts with the 
ambient atomic oxygen to produce chemiluminescence. The problems in question are 
characterized by low gas pressures  and by large departures from thermodynamic equi­
librium which are not adequately represented by the Chapman-Enskog theory. 

The branch of kinetic theory developed largely by Chapman and Enskog (see, for 
example, refs. 1 and 2) provides a rather detailed treatment of gas mixtures which a r e  
locally near equilibrium, but it embraces neither diffusion nor reaction kinetics when 
diffusion speeds a r e  not small  in  comparison with typical molecular speeds. Large 
departures from equilibrium are, of course, admissible in certain special theories, for 
example, the kinetic theory of shock waves, that of individual or crossed molecular 



beams, and Maxwell’s theory (ref. 3) of the dynamics of gases the intermolecular forces  
of which vary inversely as the fifth power of the distance between centers. 

An approach to the approximate dynamical analysis of a mixture of interdiffusing 
gases which are subject to chemical reactions and other phenomena can be based on a 
mathematical model in  which each gas species has a molecular velocity distribution 
which is locally Maxwellian with respect to a reference frame moving with the species. 
Some situations of gas mixtures in which such a distribution of molecular velocities is 
especially appropriate have been discussed by Grad (ref. 4), Morse (ref. 5), and others. 
Before the accuracy and usefulness of this kind of model in a given nonequilibrium situ­
ation is tested theoretically or experimentally, it is of interest  to ascertain various 
implications by performing appropriate kinetic theory derivations. Representative 
derivations of this type and the statement of the resul ts  in forms which should facilitate 
their application and the understanding of their physical significance comprise the main 
content of this paper. As an example of the application of these results, the expression 
derived for  the drag or tractive force acting between two gas species is used to  formu­
late equations of motion of the individual species in a mixture of several interdiffusing 
gases. The dynamical model envisaged encompasses diffusion speeds which are not 
necessarily small compared with thermal molecular speeds. 

When the present paper had been completed, the author learned that some of the 
kinetic theory results had been given previously by Tanenbaum (ref. 6), who also con­
sidered some other intermolecular potentials and compared the results with those of 
Maxwell (ref. 3). 
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SYMBOLS 

impact parameter (see, for  example, ref. 13) 

mean molecular velocity of ith species (ref. 1);equivalent to 5 of present 

Paper 

drag force, per unit volume, exerted by species j on species i; 
magnitude, Dji 

sum of drag forces  on species i 

activation energy per reactant pair of molecules 

kinetic energy of molecular pair relative to their center of mass, along line 
of centers before collision 
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0 

Fi 

0 

Gi 

0 

I 

mi 

body force, per unit mass, on species i 


divergence of stress dyadic of species i 


impulse on molecule 2 in collision (see eq. (C3)) 


defined by equation (E6) 


defined by equation (E9) 


defined in appendix C 


defined by equation (A14) 


mass of molecule of species i 


m.m.1 J
reduced mass, mi + m
j 

defined by equation (A3) 

frequency of collisions, per unit volume, per unit time, involving one 
molecule of species 1 and one of species 2 

frequency of collisions, per unit volume, per unit time, involving one 
molecule of species 1 and one of species 2 and leading to chemical 
r eaction 

number density of species i (molecules per unit volume) 

summation index 

defined by equation (B2) 

defined by equations (El) 

probability or s ter ic  factor 

defined by equation (B4) 
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-

vi 

vi 

W 


W V )  

W 


w1 
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defined by equation (B10) 


dimensionless relative speed defined by equation (3) 


defined by equation (C10) 


integration variables 


absolute temperatures; subscript i re fers  to species 


binary temperature defined by equation (10) 


time 


bulk velocity of species i 


defined by equations (A4) or (A5) 


-
rectangular Cartesian components of V 

magnitude of 7 

- - cbulk relative velocity, u1 - u2 

molecular velocity for species i 

magnitude of Ti 

rectangular Cartesian components of Ti 

activation speed defined by equation (E2) 

defined by equation (C13) 

magnitude of w' 

magnitude of ?,-7 

i 



w2 
-
W 


;
wZ } 
wO1' Wa2 

z 

magnitude of 't2+ 't 
- c - c

molecular relative velocity, v1 - v2 

rectangular Cartesian components of G 

molecular approach speeds defined by equations (Dl) 


dimensionless activation speed, p12 
1/2w 


dimensionless parameter defined by equation (2); see figure 1 


defined by equations (4) 

diffusive drag coefficient (ref. 1, p. 415) 


co-latitude in spherical coordinate system 


angle between and w' immediately before collision 


dimensionless parameter defined by equation (B14) 


defined by equation (B14) with r replaced by r.. 
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vector defined by equation (Cl); magnitude, A 

number of gas species in mixture 

density of ith species 

0.+ 0. 
collision diameter, 2

2 

diameter of molecule of species i 

energy flow from species 1to  species 2, per unit volume, per unit time 
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u12 dissipative heating rate of species 2 due to diffusive drag of species 1, per 
unit volume 

P azimuth in  spherical coordinate system 

P W  
angle defined following equation (C7) 

w dimensionless parameter defined by equation (11) 

5 dimensionless relative molecular speed, p12 1/zw 

V gradient operator 

An overbar denotes a mean value of associated quantity. An arrow denotes a 
vector. An underline denotes volume element in velocity space, for example, 
-dV = dVx dVY dV,. 

ANALYSIS 

The kinetic theory of gases  will be used to derive analytic expressions for those 
properties or rates which are most essential to a dynamic description of a chemically 
reacting mixture of gases with different temperatures and different bulk velocities. 

In the mathematical analyses performed herein, each gas species is assumed to 
have a velocity distribution which is locally Maxwellian when viewed from an inertial 
f rame moving with the bulk velocity of the species. The smooth, elastic, hard-sphere 
molecular model is employed because of its simplicity, its use in yielding reference 
values to  which more refined values can be normalized (see ref. 2, pp. 523ff), and the 
fact that it roughly approximates the strong, short-range repulsive forces which often 
predominate in molecular collisions. Since diffusion speeds are not restricted in the 
present study and temperature differences between species are admissible, this analyt­
ical work represents an extension of the existing kinetic theory of gas  mixtures of rigid-
sphere molecules. (See refs. 1, 2, and 7.) Expressions in closed form a re  derived for 
the interspecies (binary) collision frequency (appendix A), diffusive drag (appendix B), 
molecular translational energy transfer rate (appendix C), definition of a binary temper­
ature (appendix D), and number of bimolecular collisions resulting in chemical reaction 
(appendix E). In appendix E, the additional assumptions required, which are simple and 
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well known, are concerned with the nature of molecular collisions leading to  chemical 
reaction, the quantum theory of which is largely undeveloped. (See, for  example, ref. 8.) 

The expressions derived herein are asymptotically equivalent to  well-known 
expressions of kinetic theory for  equal temperatures and relative species velocities 
which are of small  magnitude compared with typical molecular speeds. 

Assumptions 

The detailed kinetic-theory derivations given in appendixes A to E of this paper are 
based upon the assumptions that: 

(1) Binary molecular collisions prevail. 

(2) Molecules collide as smooth, elastic, hard spheres. 

(3) Each gas species has a Maxwellian velocity distribution when viewed from an 
inertial f rame moving with the species bulk velocity. 

(4) Collisions leading to chemical reaction are delimited by a s ter ic  factor and an 
activation energy. (This assumption is needed only in appendix E.) 

Temperature and bulk velocity are both permitted to  differ, without restriction, f rom one 
species to another. No explicit consideration is given to ionization, dielectric polariza­
tion, o r  diamagnetic o r  paramagnetic susceptibility, even though the results may be of 
some value in studying problems involving these phenomena. 

In connection with assumption (2), it will be seen that only the mutual collision 
diameters, not the individual radii, appear in the final equations. Moreover, it will be 
observed that the notion of collision diameter is interpretatively flexible in the case of 
the chemical considerations of appendix E, because it occurs multiplied by a s ter ic  or  
probability factor. 

In the dynamical considerations of diffusion in gas mixtures, no refinement has 
been made to account for thermal diffusion. It is assumed here that the interaction 
between the gas species in a mixture is solely that of the diffusive drag forces associated 
with species bulk velocity differences. 

Principal Derived Expressions 

In this section, the principal expressions which are derived in the appendixes are 
presented. For additional discussion and details the reader is referred to the appropri­
ate appendix. 

The expression derived in appendix A for the number N12 of collisions between 
molecules of species 1 and species 2 per  unit volume, per  unit time, can be written 
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where ni, mi, and Ti (i = 1,2) are the number density, molecular mass, and absolute 
temperature of species i, o12 is the collision diameter, k is Boltzmann's constant, 
v is the magnitude of the species relative bulk velocity, a& a! is the nearly constant 
parameter defined by 

The dimensionless speed parameter r in equation (2) is defined by 

r = p12
1PV (3) 

where, by definition, 

(4) 
1 - 2kTi - _ -
Pi mi 

Equations (A19), (A21), and (A28) are ,  in view of the definition of cq alternative forms 
of equation (1). For v = 0 (or, equivalently, r = 0) and T1 = T2, equation (1)reduces 
to  the well-known collision-frequency equation of the kinetic theory of gases. (See, for 
example, ref. 1, p. 90, eq. (4).) 

The diffusive drag force Sl2,per unit volume, exerted by species 1on species 2, 
is derived in appendix B and can be written in the form: 

m m  
where m12 is the reduced mass 

m1 + m 2 
, 7 is the bulk velocity (magnitude v) of 

species 1relative to species 2, and K is the nearly constant parameter defined by 
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With this definition of K, equations (B9) and (B16) are equivalent forms of equation (5). 
For small v (or, more precisely, for r << 1)and T1 = T2, equation (5) yields an 
expression for the resistance opposing diffusion which is asymptotically equivalent to 
Ol2n1n2(z1 - z2) of reference 1, page 415. The same limiting result w a s  obtained by 

Stefan (ref. 9) and, except for the factor 4/3, by Maxwell (ref. 7), who first analyzed the 
resistance opposing diffusion. For large v (that is, for r >> l),the magnitude of the 
diffusive drag force given by equation (5) is proportional to v2. By comparison, 
Maxwell 's analysis (ref. 3) of a gas mixture in which the intermolecular forces are 
repulsive and vary inversely as the fifth power of the distance between centers yielded 
a diffusive drag proportional to v, even for large v; it should be recognized that the 
analysis in reference 3 holds for all relative velocities because of the mathematical 
simplification wrought by the selection of the inverse fifth power model. 

The time rate of change of the molecular translational energy, per unit volume, of 
the second gas species (viewed from an inertial f rame moving with species 2) is derived 
in appendix C and can be expressed as 

4m12 
K12 = 

ml+ m2 

ml 
k(T1 - T2)N12 + 

ml+ m2 
VD12 


where N12 is the collision frequency given by equation (1)and D12 is the magnitude 
of the diffusive drag force given by equation (5). (Eq. (7) is equivalent to eq. (C17).) If 
the first and second t e rms  on the right-hand side of equation (7) a re  denoted by r12 and 

u12, respectively, it is seen that 712 is the flow of energy from species 1 to species 2 

due to the temperature difference and u12 is the dissipative heating rate of species 2 
associated with the diffusive drag. It is also noted that 

and since D12 = D217 

u12 + u21 = VD12 

Equation (9) s ta tes  that the total dissipation rate due to diffusive drag is vD12. 

(9) 
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In equation (94) of reference 3 (which should be corrected for typographical omis­
sions by inserting the factor 1/2 before the expression in braces  on the left side and the 
factor pl, different in  meaning from p1 of the present paper, before the expression 
in brackets on the right side), the expression on the right-hand side is analogous to the 
present one for K12, except for the number of molecular degrees of freedom involved 
and the independence of velocity distribution made possible by Maxwell's assumption of 
an inverse fifth-power intermolecular repulsive force. If Maxwellian velocity distribu­
tions are assumed for the two gases, the t e rms  of Maxwell's expression which cor re­

spond to the t e rms  T~~ and u12 are, respectively, proportional to T1 - T2 (with 

no dependence on temperatures in the coefficients) and proportional to v2. Thus, the 
present assumption of elastic, hard-sphere molecules leads to a more complicated 
functional dependence on T1, T2, and v; see equation (7) in the light of equations (1) 
and (5). 

In the collision theory of chemical reactions (see, for example, ref. lo), the most 
significant single variable seems to be the total kinetic energy along the intermolecular 
line of centers immediately before collision. Its hypothesized threshold value is then 
called the activation energy. With the added notion of a probability or steric factor, the 
probability of chemical reaction resulting from molecular collision can be expressed in 
mathematical terms. This theoretical approach to the kinetic theory of gas reactions, 
which is of course not without shortcomings, is followed in appendixes D and E. 

For the purposes of this paper, it is convenient to introduce a binary tempera­
ture  T12, which is a measure of the collisional energy available to produce bimolecular 
gas reactions, according to the definition 

kT12 - kT1+ -kT2 + .2 
m12 m1 "2 3 

where w is a nearly constant parameter defined by 

The analytical basis for the definition of the binary temperature T12 is provided in 
appendix D and equations (D13) and (D14) given. therein are equivalent to equation (10). 
It should be noted that the right-hand side of equation (10) is similar to forms  occurring 
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kT 

kT$) 

(2)in equations (1) and (5). Therefore, two other binary temperatures Ti:) and T12 

can be defined by the equations 

---+- - kT1 kT2 + g v 2  
m12 m l  m2 

- - -+ - - kT1 kT2 + 5 2  

m12 m1  m2 

and used to  write equations (1)and (5) in simpler forms more akin to existing kinetic 
theory; although these equations are not needed herein, they relate to a considerable 
extent the principal derived expressions. The parameters a, K, and w,which are  
plotted in figures 1, 2, and 3, respectively, all approach unity asymptotically as v 
(or r) approaches zero. 

I I I I I I , , , I  

.1 .5 1 

Dimensionless speed parameter, r 
Figure 1.- Coefficient a required for equation (A211 to be exact formula for collision frequency (and, 

correspondingly, for eq. (A271 to equal each side of eq. (AZO)). 
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Coefficient, K '"I
1.041 

I I I I I I I
.1 .5 1 5 10 50 100 

Dimensionless speed parameter, r 
Figure 2.- Dimensionless coefficient K plotted as a func t ion  of t h e  dimensionless speed parameter r. 

Dimensionless speed parameter, r 
Figure 3.- Coefficient w required for equation (D10) to be exact. 

The expression derived in  appendix E for the number Ni2  of bimolecular colli­
sions per unit time, involving one molecule of each gas species and leading to chemical 
reaction, can be written 

1 

N12 = P12n 1n2u212 
z + r  z - r  

2$6(z-r)2 e (z+r) 
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where P12 is the probability or steric factor and 

in which Ea denotes the activation energy; z, like r, is dimensionless. Equation (14) 
is equivalent to equation (E14). 

If the parameter z is not greater than approximately unity, table I shows that 
equation (14) can be written in the simpler, approximate form 

-E a1kT12 
N;2 -I P12N12e 

This form (or the equivalent, eq. (E19)) becomes an exact representation of equation (14) 
when the parameter w in T12 (of eq. (10)) is replaced by the parameter w' pre­
sented graphically in figure 4. 

TABLE I.- RATIO O F  APPROXIMATE VALUE O F  Ni2  (EQ. (E19)) TO EXACT VALUE (EQ. (14)) FOR 

VARIOUS COMBINATIONS O F  DIMENSIONLESS PARAMETERS r AND z 

I 

Ratio of N,, to exact value for r of -
I6 


Z 


0.1 0.2 0.5 1 2 5 10 20 50 100 

0.1 1.oooo 1.0000 0.99992 0.99950 0.99908 1.99966 0.99990 0.99998 1.0000 1.0000 

. A  1.0000 .99999 .99970 .99757 .99637 .99866 .99962 .99990 .99998 1.0000 

. c  
r 1.0000 .99994 .99833 .98903 .97852 .99 167 .99762 .99938 .99990 .99998 

1 1.0000 .99987 .99604 .97149 .93050 .96769 .99053 .99753 .99960 .99989 

2 1.0001 1.0010 1.0211 1.0642 .93334 .88625 .96325 .99021 .99841 .9996C 

5 1.0032 1.0623 2.5804 $7.630 104.10 1.3461 .81726 .94198 .99012 .99751 

10 1.0688 2.0527 1276.8 * * * 2.4238 .81088 .96165 .99014 

20 1.9167 171.55 * * * * * 4.7581 .86471 .9616C 

50 13902 * * * * * * * 11.915 .8088C 

LOO * * * * * * * * * 23.895 

*Denotes extremely large number. 
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- - -  

1.6r 

Coefficient, W '  

u I I I 1 I I I 
.1 .2 .5 1 2 10 20 50 1W 

Dimensionless speed parameter, r 
Figure 4.- Value of w' plotted as a funct ion of r fo r  various values of z. When substituted for w in 

equation (E19), w' renders t h e  equation exact. 

APPLICATION TO DIFFUSION IN GAS MIXTURES 

The dynamics of a mixture of interdiffusing gas species with emphasis on the drag 
forces due to substantial relative bulk velocities is considered briefly. The effect of 
chemical reactions on the species bulk acceleration, which may not be negligible in the 
case of fast reactions (for example, many reactions involving f ree  radicals), is not con­
sidered here. 

The equation of motion of the ith species (i = 1,. . .,v) in a gas mixture can be 
written (see refs. 11 and 12) 

a - 3.= p.F.pi (zui * V) I  1 1  + G.1 + Di 
+ 

where pi and 'ii are the density and bulk velocity, respectively, of the ith species, 
-c 

t denotes the time, V is the gradient operator, Fi is the body force per unit mass  
acting on species i, Ei is the divergence of the stress dyadic ( in  a simple case, Gi 
is the negative of the gradient of the partial pressure pi), and Ei is the total force per  
unit volume exerted by the other gas species on species i. If the frame of reference in-
which equations (16) are employed is not an inertial frame, each body force Fi will 
include one o r  more inertial forces, for example, centrifugal force, Coriolis force 
(dependent upon zi),etc. 

For the purposes of this analysis, the density of the gas mixture is assumed to be 
sufficiently low for  binary molecular collisions to prevail; each Ei is then a vector sum 
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of binary drag forces, '  that is, 

V 

-).

Di = 1Eji 
j=1 

where D.. 
-

is the drag or tractive force, per unit volume, which species j exerts on 
J1 ;s

species i; for j = i, sji= 0, by definition. 

The calculation of 6.. in a specific case is generally difficult. One notable 
31


exception is the binary gas mixture considered by Maxwell (ref. 3) in which each mole­
cule repels every other molecule with a force along the line of centers of mass  and 
inversely proportional to the fifth power of the distance between these centers, the pro­
portionality constant being determined by the particular type of molecular pair involved; 
in this case a remarkable analytical simplification appears and cl2 is proportional to 
the product of the densities and to the relative bulk velocity of the two species no matter 
what molecular velocity distributions exist in the two gas species. Linear drag forces 
a r e  discussed generally in  reference 11. 

Another notable exception is a gas mixture whose molecules behave in collisions 
as hard elastic spheres (which is the model employed in  the present paper), provided that 
the distribution of molecular velocities in each species can be adequately approximated 
by a Maxwell -Boltzmann distribution with appropriate temperature. The temperatures 
of the different species need not be equal for the calculation to be completed as in appen­
dix B. For a mixture with more than two species, equation (B16) together with the 
assumed prevalence of binary collisions yields the nonlinear drag force 

1/2 


- iii)2] (Gj- Zi) (18) 

-Here, ni and ui are the number density and bulk velocity, respectively, of the ith gas 
species, (T.. is the collision diameter of the molecular pair (i,j), K~~ is given by equa­

13 

tion (B14) with r replaced by p. .  'I2(4- Gi I, and, by definition,
13 


lIn a real gas mixture at sufficiently high pressures,  the separability into binary 
drag forces may not be possible. Moreover, the binary forces of interaction of real 
gas species may not be pure drags, but may have components normal to the relative 
bulk velocity vectors. 
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where mi and Ti are the molecular mass  and molecular translational temperature, 
respectively, of species i. 

Equations (17) and (18) provide an explicit expression for the drag or  tractive 
force si in equation (16). The selection of values of the collision diameters D.. can 

11

be based upon theoretical interpretations of gas or molecular data. 

If considerable fractions of the molecules of one or  more gas species are in 
excited electronic energy states, the corresponding collision diameters may require 
substantial correction from those applicable to  molecules in the electronic ground 
states. 

Equations (16), (17), and (18) yield species equations of motion which reduce to 
equations (1) of reference 1 (p. 415) for near-equilibrium flows for which the species 
stress dyadic is the product of the species partial pressure and the unit dyadic. 

CONCLUDING REMARKS 

Some of the basic dynamic characteristics of a model of a reacting gas mixture 
which is not necessarily near equilibrium have been examined. The comparison of the 
results with the corresponding ones of more elementary kinetic theory has been facili­
tated by the introduction of the binary temperature concept. 

Simple models or approximations which a re  analytically tractable are needed in 
preliminary investigations where a high degree of accuracy is not essential. Ultimately, 
theoretical structures of greater accuracy and detail, requiring electronic computers for 
their implementation, must be developed. 

The results presented in this study provide one starting point for further develop­
ment of the kinetic theory and continuum dynamics of gas  mixtures which are f a r  from 
equilibrium. This development can evidently proceed along several  lines, such as 
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the incorporation of more elaborate models of molecular collisions, the inclusion of radi­
ation effects, and the admission of more general molecular distribution functions. 

Langley Research Research, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., August 19, 1966, 
188-37-01-02-23. 
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APPENDIX A 

COLLISION FREQUENCY FOR TWO GASES 

WITH DIFFERENT TEMPERATURES AND 

DIFFERENT BULK VELOCITIES 

Consider a mixture of two gas species with hard-sphere molecules of diam­
eters ai (i = 1,2) and number densities ni. Their mutual collision diameter is, then, 

a1+ a 2  

9 2  = 2 
. Let each gas have a Maxwellian velocity distribution with respect to an 

inertial frame and let the velocity of the first frame with respect to the second be 7. 
Let the gas temperatures and molecular masses be denoted by Ti and mi, respec­
tively. The frequency of collisions N12, that is, the number of collisions between 
molecules of species 1and species 2 per unit volume per unit time, is derived in this 
appendix. 

With the aid of the kinetic theory of gases (see, for example, ref. 13, chs. 2 to 5, 
especially pp. 21 and 22), the collision frequency can be written, the molecular veloc­
ities Ti being referred to the second frame, 

or, the molecular velocities Ti being referred to the first frame, 

where 

pi = -mi (i = 1,2)
2kTi 
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APPENDIX A 


v i =  lq (i = 1,2) 

dvi = dVix dv.
1v 

dViz (i = 1,2) 

For given values of the parameters ni7 o12, and pi (i= 1,2), the collision fre­
quency N12 is a function of the relative speed v = 171 of the two gas species. Let 

which is the sextuple integral appearing on the right-hand side of equation (Al). 

In order to evaluate the integral defined by equation (A3), it is convenient to change 
from the variables in accordance with the linear 
transformation 

-c + ­v 1 - v = V +  O2 
02 

( G - 7 )
P l  + 

This linear transformation has  a constant Jacobian, the absolute value of which is unity, 
and has the inverse given by 

(A51 
4 - + 
w = v1 - v2 J 

19 
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APPENDIX A 

The fact that the second of equations (A5) is consistent with the ear l ier  usage of the 
4

symbol w' in relation to v1 and T2 is essential to  the intended application of the 
transformation. 	 The transformation (A4) maps one six-dimensional space (v',c)onto 

in a one-to-one manner. 

Equations (A4) yield 

2 - 2  
@1(71- ;)2 + P2v2 = (B1 + P2)V2 + P12(w' - v )  

where p12 = p1p2 
P I +  P2' 

Before applying these results to the evaluation of the integral (A3), it is interesting 
to note that equations (A3), (A4), (A5), and (A6) can be written in the symmetric forms 

V =  p1 -
p2p2 v2' 1p 1 +  02 

vl '  + p 1 +  

w = vl' - v2' 1 

where 

-tVl' =T1 - p1 i; 
p 1 +  02 

v21 = -v2 - p1 -
V 

01 + p2 1
20 
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APPENDIX A 

The molecular velocities Tlf and T2' a r e  now referred to  the natural inertial frame, 

617
which moves with velocity relative to the second inertial frame described 

p1+ p2 
earlier. In the natural inertial frame, equation (A10) reduces, in the special case for 
which T1= T2 = T, upon multiplication of both sides by kT, to the usual kinetic energy 
transformation to a center-of-mass system; similarly, the velocity v', by the first of 
equations (A9), reduces to the velocity of the center of mass  of the two molecules in the 
natural frame. Moreover, in  this case of equal temperatures, the velocity of the natural 
frame can be interpreted as the velocity of the center of mass  of two molecules, one of 
which has mass  m1 and is at rest in the first inertial frame, and the other of mass  m2 
and at res t  in the second inertial frame; this fact  follows from the preceding discussion 

+ +  + - c - c  

since v1 = v and 7 2  = 0 imply V =  0. 

Equation (A6), with (Tl - T)2 = w12, and the related linear transformation (A4) 
can be used to rewrite equation (AS) in the form 

= fwe 
- (B1+P2) v2-P12(= l2 

dV dw~ ( v )  

where 

dV = dVx dVY dV,-

d w =  dwxdw
Y 

dw,-

Performing the integrations with respect to V,, V
Y 
, and V, yields 

-p12 (G-T)2 
dw 
~ 

where, by definition, 

= fwe 
-p l2(W2-2? .G)

dw~ ( v )  -
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Changing to spherical coordinates (w, 8, q),with the half-line whose co-latitude is e = 0 
having the direction of 5 gives 

2 p l 2 w  COS e e-p12w2 
wasin e dw de d q  

where < = p12 1/2w and r = pI2 1/2v, by definition. Hence, 

2 
-2 (s + r)2e-s d s  - lrm(s- r)2e-s2d{ (A161 

p122' 

wherein the substitutions < - r = s' and < + r = s" were made and the primes were 
subsequently dropped. Equation (A16) can be written as 

The first of the four quadratures requires one integration by par ts  in order  to  reduce 
equation (A17) to  the form 

2 
M(v) = -' er + (1 + 2r2) 1; e-' ds 

p122r " I  
which can be evaluated numerically with the aid of tables of the e r r o r  function. 

Equations (Al), (A3), (A13), and (A18) yield, therefore, 
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N12 = n 1n2cr122(L)l'2+ (i+ 2.) 1;p12 

Equation (A19) gives, then, the number N12 of collisions per unit volume per unit 
time between molecules of two gases with Maxwellian velocity distributions and a relative 
bulk speed v = p12 -1/2r. The formula is exact for hard-sphere molecules with collision 
diameter o12. Equation (A19), in the limit in which the temperature of one gas 
approaches zero, reduces to the expression for  the collision frequency for a molecular 
beam of zero temperature impinging on a gas at equilibrium. (See ref. 14, p. 108.) 

In equation (A19), the function (of r) in brackets is an entire analytic function 
(with removable singularity) whose power -ser ies  representation is given by the right-
hand side of the equation 

00 

e-r2 + (:+ 2.) Ior -)e-s2ds = 2 1 (-l)n+l 
2n 

(A201 
n=0 

For real  numbers r # 0, the first two t e rms  of the ser ies  a re  positive and subsequent 
t e rms  alternate in sign. 

It will also be shown in this appendix that equation (A19) can, with both justification 
and advantage, be written in the form 

2 7 r  1/2 1/2 
N12 = "1"2?2 (G) 2(1+  ;a r 2 )  

where LY is defined by equating the right-hand side of equation (A19) and the first right-
hand side of equation (A21); therefore, 

where, by the usual definition, 
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For 0 5 r 5 r S 1, the first two t e r m s  of the power series (eq. (A20) yield the 

approximation 2 (1+mr?9- with an e r r o r  which is positive and less than rmax4/15. The 

power series (eq. (A20)), rewritten as a series of nonpositive powers of l/r, is the 
Laurent expansion about the ideal point a t  infinity; thus, the function has  an essential 
singularity there and no expansion in nonnegative powers of 1/r is possible. However, 
if consideration is restricted to  real values of r >> 1, it is easy to show with the aid of 
tables that the left-hand side of equation (A20) is approximated by n-1/2 [r + (2r)-1], 
and somewhat less accurately by 7r1/2r. The preceding resul ts  suggest combining the 
features of the function on the left-hand side of equation (A20) at small and large r in 
approximations such as 

2 (1 + - r  2 y 23" 


and so forth. These approximations, in ratio to the given function (A20), a re  plotted in 
figure 5. 

The approximation (A23) yields, with equation (A19), the approximate collision 
frequency 

2 n  1/2 
N12 "l"2O12 (1312) 2 (1+ :r2) 

1/2 

or, upon rearranging and substituting for p12 and r2, 

which has an obvious physical interpretation in t e rms  of the thermal translational 
energies and the kinetic energy, per  unit mass, of either gas relative to the other. 
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I 

1.05i-
Ratio of approximate col l is ion _-------

frequency to exact value ‘*O01 

.9oL 
I .L . . 1 , , , I  1 L I I I , , , I  I , . , , I  

.1 .5 1 5 10 50 100 

Dimensionless speed parameter, r 
Figure 5.- Comparison of approximations (eqs. (A23). (A24), and (A25)) for  col l is ion frequency with exact value. 

Equations (A23) and (A241 are  of the form of equation (A271 with a = Constant. 

The graphical representations of the approximations (A23) and (A24) in figure 5. 
suggest expressing the function on the left-hand side of equation (A20) in the simple and 
exact form 

which corresponds to  the collision frequency (exact) 

1/2 2 3 kT1+ 3 kT2 g v 2
N12 = 4 ( 3  “ln2=12 (zq 2 m2 2 

where CY is nearly constant. Equation (A28) is equivalent to  equation (A21) and a: 
which is given explicitly by equation (A22), is plotted as a function of r in figure 1. The 
dimensionless parameter ag as a function of r, is asymptotically equivalent to  the con­
stant 1for r << 1, and to  the constant 3n/8 for  r >> 1. 
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Another way of deriving the form of equation (A21), which is less  intuitive and 
synthetic but more satisfactory from an analytical standpoint, consists of squaring both 
sides of equation (A19), expanding the resulting right-hand side to the second power 
in r by Taylor’s theorem with a remainder, and demonstrating (with a plot such as 
fig. 1) the limited variability of the (second derivative) coefficient of the final or remain­
der  (r2/21) term. Since the expanded function (N12 

2, 
is known, the final coefficient can 

be evaluated for each value of r. The linear te rm in r is absent from the aforemen­
tioned quadratic expression (for NlZ2) and the latter therefore leads to an expression 
for  N12 of the form of equation (A21). This alternative derivation provides a f i rm 
theoretical basis for adopting the expression for  the collision frequency in the form of 
equation (A21). 
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DRAG OR TRACTIVE FORCES FOR TWO GASES 

WITH DIFFERENT TEMPERATURES AND 

DIFFERENT BULK VELOCITIES 

The drag or t r x t i v e  force per  unit volume exerted by the first gas on the second 
is derived in this appendix. The kinetic theory of gases (see, for  example, ref. 13, 
chs. 2 to  5, especially eqs. (2.27), (2.33), and expression (5.4)) yields, for the fore-
mentioned drag force, 

27rb db dvl dv2 

2 
-.c 

- V 
- V2-m12(?) "l"2 ( w 2 )  3/2 P(v) 

where b and m12 denote the impact parameter and reduced mass, respectively, and 
where, by definition, 

- P p 12
- P g 2  

2 
dvl dv2 

---.c

With the change from the variables Tl,T2 to the variables V,w defined by equa­
tion (A4), equation (B2) becomes 

where, by definition, 

Q(v) =fT - w'we 
- p  12( w 2 - 2 7 4 )  

dw-

Changing to  spherical coordinates w,8,cp with the half-line whose co-latitude is 8 = 0 
having the direction of 7 gives 
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277 J 77 J03 

vw2cos  Be 
2P12VW cos e -pl2W 2 , 

Q(V) =Io e wasin 0 dw de dq
0 0  

= %Jow[("cosh(2r<)4 2  

where, by definition, < = p12 'j2w 
that equation (B5) can be written as 

where, in two instances, the factor 

C2 sinh(2r <je-c2d< 
- 2r  

and r = p12 1/2v. It follows from equation (A15) 

< exp (-C2) was singled out for i n t e g r a h n  by parts. 
The remaining integral in equation (B6) can be transformed as follows: 

= 1er2(1-I e-' 2ds - JrW e-"d..) 

2 

J O  


Equations (B6) and (B7), together with the expression for  M(v) in equation (A18), yield 
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Q(v) = %er2r2 + %)e-r2 + (2. + 2 - %)I: e-"d.] 

p12 2r  2r 

Equations (Bl), (B3), and the first of equations (B8) provide the following equation 
for the drag o r  tractive force: 

Sl2= -vm12n1n2012 2 7 r  
1/2 

+ --&)e-r 
2 

+ (2. + 2 - 1)sore-"..] (B9)(G) zr3 

Thus, equation (B9) gives the drag 
or tractive force, per  unit volume, 
exerted by the first gas on the 
second under the assumptions 
that each gas has a Maxwelliar) 
velocity distribution and that the 
molecules behave as hard spheres 
with the mutual collision diam­
eter o12; the symbol ? denotes 
the bulk velocity of the first gas 
with respect to  the second. 

1 I 1 1 1 1 1 , I 1 1 1 1 1The right-hand side of .1 
I I I 

1.0 
I I 

10 
equation (B9) consists of a 

Dimensionless speed parameter, r 
momentum vector Tm12 m d t i - Figure 6.- Dimensionless rat io of R12 to col l is ion frequency N12 plotted as 

plied by the quantity R12 a funct ion of t h e  dimensionless speed parameter r. 

defined by 

which is plotted, as a ratio to  the collision frequency N12 given by equation (A19), in 
figure 6. Figure 6 shows that for  r >> 1, the quantity R12 is practically identical to  
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the collision frequency N12, but that, for r << 1, R12 is approximately2 4/3 of N12. 
These results can be verified analytically by observing that the expression in brackets in  
equation (B10) is asymptotically equivalent to 

and to 

711/2, 

As in appendix A, one is led to define a parameter K by 

or  

. 45rlwhich is shown graphically in figure 2. For r << 1, K 1, and for r >> 1, K = ­
128'Equation (B10) and the definition (B13) yield 

The corresponding expression for the drag o r  tractive force is 

-c 

5 1 2  = Vm12R12 

which is proportional to v for r << 1 and to v2 for  r >> 1. 

*able for r << 1)w a s  first derived by Stefan (ref. 9). 
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RATES OF CHANGE OF MOLECULAR TRANSLATIONAL ENERGIES 

RESULTING FROM ELASTIC COLLISIONS BETWEEN MOLECULES 

O F  TWO GASES WITH DIFFERENT TEMPERATURES 

AND DIFFERENT BULK VELOCITIES 

The time rate of change of the molecular translational energy per  unit volume of 
the second gas, viewed from the second inertial frame, is derived in this appendix. 
Let ? be a unit vector drawn from the center of molecule 1 of the first gas toward the 
center of molecule 2 of the second gas at the instant of collision. Let 8, (0 5 8, 5 8/2) 
be the angle which 0' makes with the relative velocity vector w' = ?, - T2 immediately 
before collision. Then, 

-+ 
+ 4 

CJ 	 = ECOS e, + x 
W 

where 

- c +

X . w = O  

+ x = I x ~ = sin ew = -b 

a12 

7I 
In the collision, molecule 2 receives the impulse 

+ + 4 -

I = 2m12w - CJ 0 = 2m 12w cos e
W 

O' = 2mI2 cos ew(G cos e, + w~-7 
The velocity T2" of molecule 2 after collision is given by 

-+ + ­
m2v2" = m v2 2  + I  

whence 

v21 2 - v 2 2 =  -2 -v2 -I + (&)z
m2 
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With the use of equations (C2), (C3), and (C5),the change in kinetic energy of 
molecule 2, resulting from the collision with molecule 1, can be written as 

Since * w'= 0, by equation (C2), the decomposition of 7, into vectors perpendicular 
to w' (?,$and parallel to w' yields 

where 'pw is the angle T2,-,X7 that is, the angle between two half-planes emanating 
from the line of w' which a r e  parallel to the vectors 7, and 0'. 

The variables of integration a r e  the six velocity components vlx . . .v2z (rela­
tive to the second inertial frame), the impact parameter b (or the corresponding 
angle Ow), and the angle 'pw. The last of these enters the right-hand side of equa­
tion (C6) only in the last te rm and therein, according to  equation (C7), simply as 
cos 'pw; the integration of this te rm from 'pw = 0 to 271 yields zero. Consequently, 
the time rate of change of the molecular translational energy per unit volume of the sec­
ond gas, viewed from the second inertial frame, is simply 

x J0'l2 2 (1 - y 2 n - b  db -­dvl dv2 
O12  

or 

where, by definition, 
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+ +
With the change from the variables T17T2 to the variables V,w defined by equa­
tions (A4), equation (C10) becomes 

- (plCP2)v2-Pl2(G-q2
dVdw (C11) 

Since the te rm of the integrand of equation (Cll) ,  of which v' w' is a factor, can 
be resolved into three odd functions of the three components of v', its contribution to 
S(v) is nihil. Hence, upon recalling the first of equations (B3) and carrying out, for the 
other part of S(v), the integrations with respect to the components of v', equation (C11) 
can be written 

m12 x)3/2 - 4 2 v  2(q- 4 2  
s(v)= (B1: P 2 )  e 

p12 W(v) + -p2 P(v) 

where, by definition 

= fw3e 
-p12(w2-25. G)

dw~ ( v )  -

Changing from the rectangular Cartesian coordinates wx7wY' w to spherical coord­= 
inates w,8,cp, where the half-line whose co-latitude is 8 = 0 has the direction of 7, 
and integrating over the intervals 0 5 cp 9 27r and 0 5 8 9 7r yield 

2 
W(v) = -2a lmc4e-( sinh(2r()d( 

~~~~r0 

where, by definition, ( = p12 'l2w and r = p12 1/2v. By singling out the factor 

( exp ( -C2)  and integrating once by parts, a comparison of the results with the third of 
equations (A15) and the first of equations (B6) shows that 

W(V) = -2 M(v) + Q(v) 
p12 

The second of equations (A13) and of equations (B3) together with equations (C12) 
and (C15) give 
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m12+ -P(v) 
p12 m2 

Furthermore, equations (Al), (A3), (the second of) (Bl), and (C16) yield 

2 9 2  m12 812 12 
K12 = Z(G- +12 + qVD12 
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DEFINITION OF A BINARY TEMPERATURE FOR 

CHEMICAL-KINETIC CONSIDERATIONS 

For considerations of the kinetics of chemical reactions, it is of interest to define 
a binary temperature T12 which is a measure of the amount of translational energy 
available for chemical reaction in bimolecular collisions. For bimolecular reactions 
within a species, that is, when the reacting molecules are chemically identical, the tem­
perature of the species serves  a similar purpose and no newly defined special tempera­
ture  is required. 

For definiteness, let all velocities be measured, unless otherwise indicated, with 
respect to the second inertial frame. If, immediately before collision, molecule 1has 
velocity w'= 7, - v2 relative to molecule 2, the relative molecular speed along the line 
of centers is w' 0' = w cos  0,. (See appendix C.) This speed is the sum of the speeds 

wol and wo2 with which the two molecules approach their mutual center of mass;  
thus, 

Wol + wo2 = w COS ew 

mlWol= m2w02 

The corresponding total kinetic energy is 

1 2E = - m w  2 + m2wa2 = 1 m12w 2cos2 ew = 1 
m12wa 2  

2 

and its mean value per collision is 

The inner integral (with respect to  b) is equal to 1 nol2 2. With the aid of equations (Al) 
and (A3), equation (D3) can therefore be written 

2 2-
E =-- 1 m12 fw3e-81w1 -p2v2 dvl dv2 

CJ N(v) 4 
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Transforming to the variables V, w by equations (A4) and carrying out the integrations 
with respect to the three components of v" yield 

where W(v) is given by equation (C13). Equations (A13) and (C15) can be used t o  write 
equation (D5) in the respective forms 

Equation (D6), together with equations (A18), (B6),and (B7), yields 

whence, for r << 1, 

and, for r >> 1, the asymptotic formula 

is applicable. The content of equations (D7), (D8), and (D9) is conveniently expressed by 
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where 

The parameter w, which is given by equation (D11) and is plotted as a function of the 
dimensionless speed parameter r in figure 3, has the asymptotic values 1and 3/4, 
respectively, as r -c 0 and r -c 00. 

It follows from equation (D8) that, for v = 0 and T1 = T2 = T, 

Eo=kT 

This result and either equation (D7) or  preferably its equivalent, equation (DlO), provide 
a basis for defining a binary temperature T12 which is a measure of the amount of 
translational energy available for chemical reaction in bimolecular collisions, that is, 

m12 (1+ ;wp12v2)
kT12 = z P12 

or, t o  afford a better comparison with equation (A28), 

3 kT12 - 3 kT1+ - ­3 kT2 + g v 2
e-_-­

2 mI2 2 ml 2 m2 2 

When the comparison is made with equation (A28), it should be recalled that w and a! 

are roughly equal to  unity. Hence, T12 is approximately equal to another binary tem­

perature T&,, defined by equation (7)on the basis of the form of equation (A28); the two 
binary temperatures are, in fact, asymptotically equivalent, as r -.0. Similarly, they 
are asymptotically equivalent (as r -c 0) to the expression for  T12 given by equa­
tion (D14) with w t,aken as unity. 

In summary, the preceding analysis suggests that the binary temperature T12 
defined by equation (D13) may be a significant and useful parameter in theoretical con­
siderations of reacting gas  mixtures which are not in dynamical equilibrium. 
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I 

NUMBER OF BIMOLECULAR COLLISIONS RESULTING 

IN CHEMICAL REACTION 

Assume that a fraction P of the bimolecular collisions, involving one molecule of 
each gas, for which the line-of-centers velocity component w' - a' (immediately before 
collision; see appendix C) lies in a small  interval of positive real values, leads to chem­
ical reaction. For simplicity, it is assumed that P is a step function, that is, 

P =  I"\_Pl2 = Constant 

where W is the activation speed; the latter is related to the activation energy Ea 
(see eq. (D2)) by 

E a = - "2' 1 2 w 2  

The quantity P12 is the probability factor or steric factor for the reaction. 

In this appendix, the number of bimolecular collisions, involving one molecule of 
each gas and leading to  chemical reaction, is calculated. This number will be denoted 
by N12'. The sevenfold integration involves the impact parameter b and the 

+ - + +
molecular velocity components, that is, (b,vl,v2) or, by appendix A, (b,V,w) o r  
(b,T,w, 8 , q ) .  The last set will be employed here to express N12'. 

It follows from equation (El)  that the integration with respect to w need extend 
only from w = W to w = "0; for, when w < W, it is certain that w' o'= w cos 8, < W 
and, therefore, P = 0. For given w > W, the condition P = P12 is, by equation (El), 
equivalent to w' 0' > W or w P w' - a' > W or  1 P cos 8, > W/w. Since, by equa­
tion (C2), 

b = a12 sin 8, = O12 (1 - cos2ew)1/2 

it follows that P = P12 if and only if 

Let the quantity to the right of the inequality be denoted by bl(w). 
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Consequently, the techniques of appendix A and reference 13 can be used to  write 

N12' = P n n (p1p2)3/2 f1 dV 
12 1 2 .3 1 ­

where 

-(Pl+pz)v2-P12(~3)2 sob'( '277b dbw'sin e dw de d q  (E6) 

and 

( ~ - v ) ~ = w ~ - 2 v w c o s e + v4 2 

Integrating with respect to  b, q, and the three components of 3 yields 

2 
a122 e -p12vN12 = 2 n 1 / 2 ~ ~ ~ n ~ n ~ ~ ~ ~ 3 / ~I2 

where 

Now 

where, by definition, r = pl2lI2v, z = p121/2W, and < = p12 'l2w. Singling out the 
factor < exp(-<2) for successive integrations by par ts  yields 

2 
+ (r2+ e-< sinh(2r<)d<+ Constant 
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With this result, equation (E10) becomes 

2 ( * 2 
I2 = - e-' sinh(2rz) + r cosh(2rzd + r2 + 1. e-< 

8122' f 2 - z2)Jz 

(E 12) 

The changes of variables employed in equations (B7) can be used to reduce the integral 
in equation (E12); thus 

I2 = Lf-' 
28122, 

2 sinh(2rz) + r cosh(2rzl  + er2(r2 + i - z2)~"" (E13)
z -r 

Equations (E8) and (E13) finally yield the following expression for the number of 
bimolecular collisions, involving one molecule of each gas and leading to chemical 
reaction, 

N12' = P12nln2u122(~)l '2 {;E + E + (1 - $e-4 r j  2 

p12 

which can be evaluated, for various combinations of z and r, with the aid of e r ro r -
function tables and an asymptotic expansion of the complementary e r r o r  function. 

For r = 0, equation (E14) reduces to 

(Gf/2 2 
N12' = P12 2n1n2ul2 2 . r r  e-' 

which is the product of the s ter ic  factor, the collision frequency (see eq. (A21)), and the 
factor exp(-z 2 ). The last factor can, by equation (D10) with r = 0 and equation (E2), 

be written 

-22 -P12W2 
e = e  = e  
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This equation reduces, for T1 = T2 = T, by equation (D12), to 

which is the well-known Arrhenius factor of reaction-kinetics theory. On the other hand, 
if r # 0 and z = 0, equation (E14) reduces to N12' = P12N12 (cf. eq. (A21)). 

The observations of the preceding paragraph suggest the following approximate 
form for the more general but unwieldy equation (E14): 

" P  N e 
-E a1kT12 

N12 = 12 12 

where N12 is the collision frequency given by equation (A21) and T12 is the binary 
temperature given by equation (D13). In t e rms  of the dimensionless parameters r 
and z, the approximation (E18) appears as 

The ratio of this approximate value of N12' to its exact value (eq. (E14)) is given in 
table I for several combinations of r and z. 

Since the approximation (E19) approaches zero too slowly as z approaches 00, 

the right-hand sides of equations (E14) and (E19) have been equated and solved for w. 
This value of w, denoted by w', which makes equation (E19) exact, is plotted as a 
function of r for various values of z in figure 4. 

A comparison of figures 3 and 4, in conjunction with the form of equation (E19), 
shows that, for z 5 1, equation (E19) with w = 1 provides a better approximation for 
N12' than does equation (E19) with w given by equation (11) (plotted in fig. 3). 
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